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Figure 1.1: Schematic layout of the planned EIC accelerator based on the existing RHIC
complex at Brookhaven National Laboratory.

electrons and ions and use sophisticated, large detectors to identify specific reac-
tions whose precise measurement can yield previously unattainable insight into
the structure of the nucleon and nucleus. The EIC will open a new window into
the quantum world of the atomic nucleus and allow physicists access for the first
time to key, elusive aspects of nuclear structure in terms of the fundamental quark
and gluon constituents. Nuclear processes fuel the universe. Past research has
provided enormous benefit to society in terms of medicine, energy and other ap-
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Figure 3.1: CAD model of a particular EIC detector concept, with the artistic rendering of
the tracking, particle identification, and calorimetry subsystems.

gas amplification modules at the endcaps is under construction for the sPHENIX
experiment and may be modified for use at the EIC. Upgrades to the read-out pads
for the EIC would be focused on micro-pattern gaseous detectors such as gas elec-
tron multipliers (GEMs), µMEGAs or µRWELL can provide electron amplification
before read-out on high granularity anode printed circuit boards. Gaseous tracking
detectors also aid in particle identification with ionization energy loss information.

Two baseline tracking detector concepts are presented. An all-silicon tracking de-
tector option with barrel and endcap silicon detector can be realized in a com-
pact form. A hybrid tracking system combines a silicon vertex detector within
a TPC and provides dE/dx measurements that can aid particle identification. In
both main options, alternative tracking options exist in the backward and forward
tracking endcaps.

3.2 Particle Identification Detector Systems

The second major detector system, particle identification, separates electrons from
pions, kaons, and protons, with significant pion/electron suppression and better
than 3s pion/kaon/proton separation in all rapidity regions. Using the specific
ionization (dE/dx) in time projection chambers with novel gas mixtures allows for
improved resolution approaching the limit of Poisson statistics. However, dedi-

CHAPTER 2. PHYSICS MEASUREMENTS AND REQUIREMENTS 7

Table 2.1: Different categories of processes measured at an EIC (Initial state: Colliding elec-
tron (e), proton (p), and nuclei (A). Final state: Scattered electron (e0), neutrino (n), photon
(g), hadron (h), and hadronic final state (X)).

Neutral-current Inclusive DIS: e + p/A �! e0 + X;
for this process, it is essential to detect the scattered
electron, e0, with high precision. All other final state
particles (X) are ignored. The scattered electron is crit-
ical for all processes to determine the event kinematics.
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Charged-current Inclusive DIS: e + p/A �! n + X;
at high enough momentum transfer Q2, the electron-
quark interaction is mediated by the exchange of a W±

gauge boson instead of the virtual photon. In this case
the event kinematic cannot be reconstructed from the
scattered electron, but needs to be reconstructed from
the final state particles.
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Semi-inclusive DIS: e + p/A �! e0 + h±,0 + X, which
requires measurement of at least one identified hadron
in coincidence with the scattered electron.
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Exclusive DIS: e + p/A �! e0 + p0/A0 + g/h±,0/VM,
which require the measurement of all particles in the
event with high precision.

p

e ev
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• How does a dense nuclear environment affect the dynamics of quarks and
gluons, their correlations, and their interactions? What happens to the gluon
density in nuclei? Does it saturate at high energy, giving rise to gluonic matter
or a gluonic phase with universal properties in all nuclei and even in nucle-
ons?

Where can ML play a role?

EIC Yellow Report

Understanding QCD

Data-Theory comparison

Experiment Theory
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gas amplification modules at the endcaps is under construction for the sPHENIX
experiment and may be modified for use at the EIC. Upgrades to the read-out pads
for the EIC would be focused on micro-pattern gaseous detectors such as gas elec-
tron multipliers (GEMs), µMEGAs or µRWELL can provide electron amplification
before read-out on high granularity anode printed circuit boards. Gaseous tracking
detectors also aid in particle identification with ionization energy loss information.

Two baseline tracking detector concepts are presented. An all-silicon tracking de-
tector option with barrel and endcap silicon detector can be realized in a com-
pact form. A hybrid tracking system combines a silicon vertex detector within
a TPC and provides dE/dx measurements that can aid particle identification. In
both main options, alternative tracking options exist in the backward and forward
tracking endcaps.

3.2 Particle Identification Detector Systems

The second major detector system, particle identification, separates electrons from
pions, kaons, and protons, with significant pion/electron suppression and better
than 3s pion/kaon/proton separation in all rapidity regions. Using the specific
ionization (dE/dx) in time projection chambers with novel gas mixtures allows for
improved resolution approaching the limit of Poisson statistics. However, dedi-
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Table 2.1: Different categories of processes measured at an EIC (Initial state: Colliding elec-
tron (e), proton (p), and nuclei (A). Final state: Scattered electron (e0), neutrino (n), photon
(g), hadron (h), and hadronic final state (X)).

Neutral-current Inclusive DIS: e + p/A �! e0 + X;
for this process, it is essential to detect the scattered
electron, e0, with high precision. All other final state
particles (X) are ignored. The scattered electron is crit-
ical for all processes to determine the event kinematics.
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Charged-current Inclusive DIS: e + p/A �! n + X;
at high enough momentum transfer Q2, the electron-
quark interaction is mediated by the exchange of a W±

gauge boson instead of the virtual photon. In this case
the event kinematic cannot be reconstructed from the
scattered electron, but needs to be reconstructed from
the final state particles.
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Semi-inclusive DIS: e + p/A �! e0 + h±,0 + X, which
requires measurement of at least one identified hadron
in coincidence with the scattered electron.
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Exclusive DIS: e + p/A �! e0 + p0/A0 + g/h±,0/VM,
which require the measurement of all particles in the
event with high precision.
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• How does a dense nuclear environment affect the dynamics of quarks and
gluons, their correlations, and their interactions? What happens to the gluon
density in nuclei? Does it saturate at high energy, giving rise to gluonic matter
or a gluonic phase with universal properties in all nuclei and even in nucle-
ons?

Understanding QCD

Where can ML play a role?
Detector optimization

Object reconstruction

Observable 
design

Model fitting / parameter estimation

Data-Theory comparison

(a few examples)

Unfolding
See B. Nachman talk
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Particle flow
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Fig. 5: The neutral energy relative residuals (Epredicted �ENeutral)/(ENeutral) distributions of the pPflow and the different NN
algorithms for different energy ranges described in the text. The distributions are fit with a sum of two gaussians to catch
non-gaussian tails. The values of the central gaussians are shown in the plots. In order to compare with pPflow performance,
all the residuals are computed from the topocluster closest to the track.

Fig. 6: The distance computed in number of cells between the barycenter of the predicted and truth neutral energy in the
ECAL2 layer when using the pPflow or the NN algorithms for different energy ranges described in the text. The equivalent
distributions in different calorimeter layers show a similar behaviour.

resolution layers and illustrates how the super-resolution GNN
predictions are able to produce a mass peak with a resolution
close to that of the native high-resolution images.

For the HG calorimeter, the spatial resolution of the shower
allows to capture two distinct photon energy clusters using
the k-mean algorithm. For the LG detector, the spatial res-
olution is missing and hence the k-mean algorithm fails to
identify two peaks distinctively. Hence when we try to con-
struct an invariant mass spectrum from two reconstructed
clusters, the output of HG detector gives a well reconstructed
peak whereas a relatively flat distribution is obtained from
the LG shower.

8 Conclusion and outlook

Particle Flow reconstruction has an important role in high
energy particle collider experiments and is being considered
for the design of future experiments. A key component of
particle flow reconstruction is the ability to distinguish neu-
tral from charged energy deposits in the calorimeters. In this
paper, a Computer Vision approach to this task, based on
calorimeter images, is proposed. This approach explores the
ability of Deep Learning techniques to produce calorime-
ter images of the energy deposits with an optimal separa-
tion of the energy deposits originating from neutral parti-

Di Bello et al. EPJC 81 107 (2021) 
ML is promising to improve particle flow algorithms

Identify/disentangle calorimeter showers
3

�+

�0 � ��

�+

�0 � ��

�

�

�
� �

�

�
�

Fig. 1: A 3-D display the energy deposits of p+ and p0 ! gg in the LG calorimeters (left) and of p0 only (right). The p+

track and its extrapolation to the calorimeters is also displayed. Cells, where the fraction of deposited energy from the p+ is
dominant are illustrated in red. The neutral energy deposits originating from the p0 are otherwise illustrated in green. The
extrapolation of the p+ trajectory is also indicated.

separate between the two photon clusters in contrast to the
32⇥32 layers.

3 Simulated data

The electromagnetic showers of the photons from the subse-
quent decay of the neutral pion and the hadronic shower of
the charged pion are simulated using GEANT 4 [19] using
the detector layout described in Section 2. Electronic noise
in the calorimeter is also taken into account.

To ensure significant overlap between the charged and
neutral hadron, the polar angle of the p+/p0 momenta varies
randomly between p/100 to 3p/200 radians, whereas the
azimuthal angle varies uniformly between 0 and 2p radi-
ans with a relative separation of p/60 radians. The p+ and
p0 are generated using the GEANT particle gun functional-
ity. The source of the gun is located 150 cm away w.r.t. the
first ECAL layer. To populate different parts of the detec-
tor, the initial location of the neutral and charged hadron in
the event is randomly chosen from the corner of a square at

the source location with a length size equal to 20 cm. Four
sets of independent simulations are run with different energy
ranges of: 2�5 GeV, 5�10 GeV, 10�15 GeV and 15�20
GeV. The energy of the generated charged and neutral pions
are randomly sampled from a uniform distribution bounded
within these ranges, without any correlation among the pi-
ons energies. The generation parameters of the particle gun
ensure that a large proportion of detector cells have a signifi-
cant amount of energy overlap, originating from the individ-
ual showers. The average fraction of neutral energy within
groups of clustered cells, referred to as topoclusters (see
Section 5), is around 60%. The effect of electronic noise is
emulated using gaussian distributions centered at zero with
variables widths for different layers. The per cell levels of
noise in each layer are given in Table 2. For each cell in
the event an energy is sampled from these distributions and
added to the total energy.
To cross-check the effect of energy boundary transition, a
sample with p+ ,p0 energies randomly varied berween 2�
20 GeV was also produced.

Relevant for EIC jets: neutral information at mid-rapidity, high granularity at forward rapidity
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the relative jet energy resolution, s, defined as:

s ⌘ s
q40

=
q75 � q25

2
1

q40
, (6)

where the resolution s is divided by q40, the most probable value estimated as the 40% quantile
of the target distribution. The relative improvement on s for b jets for various physics processes
is between 12 and 15%, as can be seen from Table 1. Figure 3 shows the value of s obtained
for b jets from the tt test sample as a function of the generator-level p

gen
T (left), h (center),

and r (right). The lower panels in Fig. 3 show the relative improvements resulting from the
DNN energy correction. The observed behavior agrees with the expectation that the regression
correction should optimize the jet energy resolution, while the baseline corrections aim for
a flat response as a function of the jet generator-level p

gen
T and h. For all physics processes

considered, the per-jet relative resolution improvement is around 12–18% for pT < 100 GeV,
falling to around 5–9% for pT > 200 GeV. This improvement translates into an improvement in
sensitivity of the analyses that make use of b jets in the final state. The improvement in the b
jet energy resolution brought by the regression is similar for b jets with and without associated
leptons. This demonstrates that the algorithm is able to correct not only for the undetected
neutrinos in semileptonic decays of b hadrons, but also for effects that may only be present in
hadronic decays. In addition, the regression was shown to improve the response of light jets
by about 3%.
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Figure 3: Relative jet energy resolution, s, as a function of generator-level jet p
gen
T (left), h

(center), and r (right) for b jets from tt MC events. The average pT of these b jets is 80 GeV.
The h and r distributions are shown for jets with pT 2 [70, 100] GeV. The blue stars and red
squares represent s before and after the DNN correction, respectively. The relative difference
Ds/sbaseline between the s values before and after DNN corrections is shown in the lower pan-
els.

Table 1: Relative differences Ds/sbaseline between the s values obtained before and after applying the
DNN energy correction for b jets produced in the different physics processes indicated.

MC sample Improvement
tt 12.2%
Z(! `+`�)H(! bb) 12.8%
H(! bb)H(! gg) SM 13.1%
H(! bb)H(! gg) resonant 500 GeV 14.5%
H(! bb)H(! gg) resonant 700 GeV 13.1%

Knowledge of jet energy resolution on a jet-by-jet basis can be exploited in analyses searching
for resonant production of b jet pairs to increase their sensitivity. We have checked the corre-
lation between the jet resolution s and the value of the per-jet resolution estimator, ŝ, provided

Jet calibration

5

Jet energy, mass resolution

CMS-DP-2021/017

ML-based regression improves resolution

CMS-HIG-18-027

b-jet energy resolution
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Figure 7: Effective jet mass resolution (σeff / m) as a function of the target mass obtained with the soft drop (dashed) and the mass
regression (solid) algorithms for various jet compositions: H→bb (red), H→cc (orange) and H→qq (blue). The mass resolution is
shown for large-R (R=0.8) Higgs boson jets with pT > 400 GeV (left) and for large-R (R=1.5) Higgs boson jets with pT > 200 GeV (right).
The mass regression shows a substantial improvement in the resolution for all the considered mass range.
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boosted jet mass resolution
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ML-assisted fast simulation: significant speedup
CaloFlow 

Kraus, Shi 2106.05285
CaloGAN 

Paganini, de Oliveira, Nachman
PRD 97 (2018) 1, 014021

AtlFast3 
ATLAS 2109.02551

…

27th July 2021 ML4Jets 2021 - Joshua Beirer

Motivation
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• Significant increase in integrated 
luminosity and number of collisions 
per bunch crossing in Run 3 and HL-
LHC 

• More MC statistics needed due to 
more data 

• Will not be able to keep up with MC 
needs according to current computing 
model 

• R&D necessary to keep up in Run 3 
and beyond

Deep Generative Models will be crucial for the LHC.
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSO✏ineComputingResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

At the end of LHC Run 3, the computational
needs will exceed the available budget.

A large fraction goes into simulation.

CERN-LHCC-2020-015; LHCC-G-178

Claudius Krause (Rutgers) CaloFlow (arXiv:2106.05285) July 7, 2021 2 / 17

High luminosity requires massive computation effort
Detector simulation is largest component

CERN-LHCC-2020-015

especially the performance increase in E2/Êtot compared to CaloGAN is remarkable.

• The third rows of figs. 11 – 13 show the layer (depth)- weighted total energy, ld =P2
k=0 kEk, on the left; the layer-weighted energy normalized to the total energy, sd =

ld/Êtot, in the center; and the standard deviation of sd, called shower depth width �sd ,

on the right. The quantity sd was called “shower depth” in [8]. In ld we see CaloFlow

better maps out the low-energy region compared to CaloGAN. Notice also how well

CaloFlow learns the sharp feature in �sd .

Figure 11. Distributions that are sensitive to Flow I for e
+. Top row: energy deposition per layer

and total energy deposition; center row: layer energy normalized to total energy deposition; bottom
row: weighted energy depositions, see text for detailed definitions.

– 20 –
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Detector design

7

See J. Lajoie talk

ML-assisted detector design to improve reconstruction performance

First major detectors with opportunity to take advantage of ML at design stage

ECCE optimization of tracking system Bayesian optimization of dRICH
Cisbani et al. JINST 15 (2020) 05, P05009

Table 1. The main parameters injected in the Bayesian Optimizer. The regions of parameter space explored
are based on previous studies [6]; definition of the parameter reference systems can be found in text and
footnote 9. The tolerances refer to the expected feasible construction tolerances; variation of the parameters
below these values are irrelevant.

parameter description range [units] tolerance [units]
R mirror radius [290,300] [cm] 100 [µm]

pos r radial position of mirror center [125,140] [cm] 100 [µm]
pos l longitudinal position of mirror center [-305,-295] [cm] 100 [µm]
tiles x shift along x of tiles center [-5,5] [cm] 100 [µm]
tiles y shift along y of tiles center [-5,5] [cm] 100 [µm]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [µm]
naerogel aerogel refractive index [1.015,1.030] 0.2%
taerogel aerogel thickness [3.0,6.0] [cm] 1 [mm]

mirror center on a spherical surface, which contribute to determine the sensor area and orientation
relative to the mirror.9 These parameters, reported in Table 1, cover rather exhaustively the two
major components of the dRICH: its radiators and optics. They have been chosen to improve the
dRICH PID performance, under the constraint that it is possible to implement any values resulting
from the optimization with (at worst) only minor hardware issues to solve. We assume 100 µm as
the minimum feasible tolerance on each spatial alignment parameter, whereas for the aerogel, we
assume 1 mm on the thickness and 0.2% on the refractive index.
A relevant parameter has been essentially neglected in the optimization: the gas refractive index,
whose tuning would require a pressurized detector making this choice hardly convenient. We also
postpone the optimization of the TOF-aerogel transition region, since at the moment these are two
separate detectors with di�erent simulation frameworks. The parameter space can be extended once
detailed results from prototyping and tests will be available.

Since the aim of the design optimization is to maximize the PID performance of the dRICH,
it is natural to build the objective function using the separation power between pions and kaons,
defined as

N� =
| |h✓K i � h✓⇡i | |

p
N�

�1p.e.
✓

, (3.1)

where h✓K i and h✓⇡i are the mean Cherenkov angles for kaons and pions, respectively, obtained from
the angular distributions reconstructed by Inverse Ray Tracing [10]. Here, N� = (N⇡

� +N
K
� )/2 is the

mean number of detected photo-electrons and �1p.e.
✓ the single photo-electron angular resolution;

the reconstructed angles are approximately Gaussian distributed, hence �1p.e.
✓ /

p
N� corresponds to

the averaged RMS of the above mean angles, i.e. the ring angular resolution.
In order to simultaneously optimize the combined PID performance of both the aerogel and

gas parts in the dRICH, two working points have been chosen based on the performance of the
baseline design. In particular, we chose one momentum value with ⇡ 3� ⇡/K separation each for
the aerogel and the gas: p1 = 14 GeV/c and p2 = 60 GeV/c, each close to the end of the curves
reported in Fig. 3 for the aerogel and gas, respectively. The goal here is to optimize the quantities

9 The Cartesian reference frame of the tile shifts has the origin in the center of a dRICH conical-trunk sector (see Fig.
2), z is along the beam, x along the sector radii, and y derived accordingly; the single sector detector is then replicated
six times to build the whole detector (namely, a standard Geant4 procedure).

– 7 –

Figure 7. The marginalized posterior distribution on each parameter obtained with BO. Notice that the FoM
is defined with a negative sign. The two-headed blue arrow shows the tolerance region (as 95% confidence
level (C.L.) interval) on each parameter, where changing the parameter does not a�ect significantly the
obtained performance. The behavior of the shift of these in the y direction (tiles y) is flat, indeed a small
lateral shift of the tiles is expected to have no impact on the PID capability.

Figure 8. ⇡/K separation as number of �, as a function of the charged particle momentum. The plot shows
the improvement in the separation power with the approach discussed in this paper compared to the legacy
baseline design [6]. The curves are drawn with 68% C.L. bands which are barely visible in the log plot, but
this lets better appreciate the significant di�erence between optimized and baseline curves.

At least 3� ⇡/K separation is achieved in the aerogel region for P  13.5 GeV/c (compared to the
baseline 12.5 GeV/c), whereas in the gas region the same separation is obtained for P  64 GeV/c
(compared to 58 GeV/c).

Both the baseline and the optimized curves have been calculated using charged tracks in the
angular region (5,15) deg. As expected, once the optical properties of the aerogel are fixed (i.e. the
refractive index dispersion curve, strictly connected with the single photon chromatic error), there

– 12 –
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Classification - jet identification

7

• Quark vs gluon tagging
• QCD vs boosted Z/W-jet
• Boosted top-quarks

• Sparse data sets
• Machine learned taggers can significantly outperform QCD theory-inspired methods

Oliveira, Kagan, Mackey, Nachman, Schwartzman `15

Average images of W and QCD jets

Convolutional Neural Networks (CNNs)
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Classification - jet identification

7

• Quark vs gluon tagging
• QCD vs boosted Z/W-jet
• Boosted top-quarks

• Sparse data sets
• Machine learned taggers can significantly outperform QCD theory-inspired methods

Oliveira, Kagan, Mackey, Nachman, Schwartzman `15

Average images of W and QCD jets

Convolutional Neural Networks (CNNs)
Jet tagging at EIC

Charm-jet tagging
Tagged jet populations to be used for 3D structure? 

Jet tagging
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At LHC: quark/gluon, boosted top/h/W/Z

ML models outperform physics observables
Point clouds w/NNs

ParticleNet
ABCNet
PFNs, EFNs

Lund image w/GNN: LundNet

 Introduction           Collinear PDFs         TMDs          Diffraction & Saturation           Hadronization & eA        Conclusions     
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• PDFs and the proton spin

“Spin crisis” — Only a small fraction of the proton
                       spin carried by the valence quarks

Jaffe, Manohar `90
Ji `97

Arratia, Furletova, Hobbs, Olness, Sekula 2006.12520

Dreyer, Qu JHEP 52 (2021)

SciPost Physics Submission

Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on

15

Kasieczka et al., SciPost Phys. 7 (2019) 014

Qu, Gouskos PRD 101 (2020) 5, 056019

Mikuni, Canelli EPJP 135 (2020) 6, 463

Komiske, Metodiev, Thaler JHEP 01 (2019) 121
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QCD vs. Z jet discrimination

Datta, Larkoski JHEP 06 (2017) 073

By constructing a complete set of IRC-safe 
observables, one can study at what point 
the information content saturates

A jet with  particles can be fully 
specified by  observables 
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Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

– 3 –
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Figure 2: Illustration of the momentum fraction and pairwise angle variables that describe

2-body (right) and 3-body (left) phase space.

and azimuth between particle i and axis K in the jet. There are numerous possible choices for

the N axes in the jet; in our numerical implementation, we choose to define them according

to the exclusive kT algorithm [29, 30] with standard E-scheme recombination [31]. Note that

⌧
(�)
N = 0 for a jet with N or fewer particles in it.

To identify structure in the jet, we need to measure an appropriate number of di↵erent

N -subjettiness observables. This requires an organizing principle to ensure that the basis of

observables is complete and minimal. Our approach to ensuring this is to identify the set

of N -subjettiness observables that can completely specify the coordinates of M -body phase

space. Ensuring that the set is minimal is then straightforward: as M -body phase space is

3M � 4 dimensional, we only measure 3M � 4 N -subjettiness observables. A jet also has an

overall energy scale. To ensure sensitivity to this energy scale, we will also measure the jet

mass, mJ .

We will describe how to do this for low dimensional phase space, and then generalize to

arbitrary M -body phase space. We will work in the limit where the jet is narrow and so all

particles in the jet can be considered as relatively collinear. This simplifies the expressions

for the values of the N -subjettiness observables to illustrate their content, but does not a↵ect

their ability to span the phase space variables.

• 2-Body Phase Space: 2-body phase space is 3 · 2 � 4 = 2 dimensional. For a jet with

two particles, the phase space can be completely specified by the transverse momentum

fraction z of one of the particles:

z =
pT1

pTJ
, 1 � z =

pT2

pTJ
, (2.2)

and the splitting angle ✓ between the particles. This configuration is shown in Fig. 2a. To

uniquely identify the z and ✓ of this jet, we can measure two 1-subjettiness observables,

defined by di↵erent angular exponents ↵ 6= �. For concreteness, we will measure ⌧
(1)
1 and

⌧
(2)
1 .

– 4 –

e.g. N-subjettiness basis:

• M-Body Phase Space: For M -body phase space, we can define the coordinates of

that phase space by M � 1 transverse momentum fractions zi, for i = 1, . . . , M � 1, and

2M � 3 pairwise angles ✓ij between particles i and j. The remaining
✓

M

2

◆
� (2M � 3) =

1

2
(M � 2)(M � 3) ,

pairwise angles angles are then uniquely determined by the geometry of points in a plane.6

To determine all of these phase space variables, we extend the set of N -subjettinesses

that were measured in the 2- and 3-body case. In this case, the 3M � 4 observables we

measure are:
n

⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , . . . , ⌧

(0.5)
M�2, ⌧

(1)
M�2, ⌧

(2)
M�2, ⌧

(1)
M�1, ⌧

(2)
M�1

o
. (2.8)

Note that there are 3(M � 2) + 2 = 3M � 4 observables, and these will span the space

of phase space variables for generic momenta configurations, when all particles have

non-zero energy and are a finite angle from one another.

As we observed in the 3-body phase space case, for a collection of M particles, all but

one of the axes for the measurement of (M � 1)-subjettiness lies along the direction of

a particle. Therefore, we only measure two (M � 1)-subjettiness observables. Stepping

back another clustering as relevant for (M � 2)-subjettiness, there are two possibilities:

– Either M �3 axes lie along the direction of M �3 particles in the jet, and the three

remaining particles are all clustered around the last axis. Then, the measurement

of (M �2)-subjettiness is sensitive to the phase space configuration of 3 particles in

the jet. By measuring three (M � 2)-subjettinesses and two (M � 1)-subjettinesses,

this then completely specifies the phase space configuration of those three particles.

– The other possibility is that M �4 axes lie along particles in the jet, while there are

two particles clustered around each of the two remaining axes. About each axis, you

are sensitive to the phase space configuration of two particles, which corresponds

to a total of 4 phase space variables. Additionally, you are sensitive to the relative

contribution of the two pairs of particles to the total (M � 2)-subjettiness value.

This configuration therefore is described by 5 phase space variables, and can be

completely specified by the measurement of three (M � 2)-subjettinesses and two

(M � 1)-subjettinesses.

This argument can be continued at further stages in the declustering. Each time an axis

is removed, three new phase space variables are introduced. These can be completely

specified by the measurement of three additional N -subjettiness observables. This then

proves that the collection of N -subjettiness observables given above uniquely determines

M -body phase space.

6The proof of this is an application of the Euler Characteristic formula:

V � E + F = 2 . (2.7)

The number of vertices V is just the number of particles in the jet, M . The number of faces F is equal to the

number of triangles that tesselate the plane, with vertices located at the particles. This is F = M � 1, as we

include the face outside the region where the points are located. It then follows that the number of edges E,

that is, the number of pairwise angles necessary to uniquely specify their distribution, is E = 2M � 3.

– 6 –
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This concept can be extended to medium modification of jets

How much information is in the nuclear modification factor of jets?

Yue Shi Lai,1, ⇤ James Mulligan,1, 2, † Mateusz P loskoń,1, ‡ and Felix Ringer1, §

1
Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

2
Physics Department, University of California, Berkeley, CA 94720, USA

(Dated: July 1, 2021)

In heavy-ion collisions the substructure of jets is modified compared to a rescaled proton-proton
baseline due to the presence of the Quark-Gluon Plasma (QGP). In this work, we employ machine
learning techniques to quantify how much information is contained in the nuclear modification
factor of jet substructure observables. We formulate the question about the information content as
a binary classification problem where the machine is trained to learn information that distinguishes
jets in proton-proton and heavy-ion collisions. We perform the classification task using i) deep sets
which includes Infrared-Collinear (IRC) safe and unsafe information, ii) a complete basis of IRC safe
jet substructure observables which is passed to a Dense Neural Network (DNN) and iii) from the
trained DNN we identify optimal observables using symbolic regression. As a proof of concept, we
perform our analysis using parton shower event generator models but we expect that the proposed
framework can be applied directly to the raw data for which we outline possible future directions.
We expect that the automated design of suitable observables for heavy-ion collisions can provide
guidance for extracting information about the QGP from jet substructure data. In addition, the
proposed framework can also be applied to event-wide data samples in heavy-ion collisions and at
the future Electron-Ion Collider.

I. INTRODUCTION

Jets are highly energetic and collimated sprays of par-
ticles which are observed in the detectors of high-energy
scattering experiments such as RHIC and the LHC. They
directly reflect the underlying quark and gluon degrees
of freedom which acquire a large transverse momentum
due to a hard-scattering event and subsequently form a
jet due to multiple soft and collinear emissions. The area
of jet substructure is aimed at quantifying and utilizing
the radiation pattern inside jets [1–3]. Jets and their
substructure have been studied both in pp and heavy-
ion AA collisions. In heavy-ion collisions the Quark
Gluon Plasma (QGP) is formed which is a state of
matter where quarks and gluons are unbound and the
QGP is conjectured to have existed shortly after the Big
Bang. By comparing vacuum jets (pp) to their coun-
terparts in heavy-ion collisions which have traversed the
hot and dense nuclear matter, information about the
QGP can be obtained. The modification of jets in heavy-
ion collisions is typically quantified in terms of the nu-
clear modification factor which is given by the ratio of
the heavy-ion cross section and a rescaled pp baseline
RAA = d�AA/(hNcollid�pp). From the inclusive jet cross
section, it was found that only roughly half of the jets are
produced in heavy-ion collisions compared to pp []. In
addition, various jet substructure observables have been
measured in AA collisions. It turns out that some ob-
servables are consistent with no modification while oth-
ers are significantly modified due to the presence of the

⇤ ylai@lbl.gov
† james.mulligan@berkeley.edu
‡ mploskon@lbl.gov
§ fmringer@lbl.gov

FIG. 1. Schematic illustration of jets in pp (left) and heavy-
ion AA (right) collisions. Interactions with the Quark-Gluon
Plasma can lead to a modification of the jet substructure.
By training a classifier (fully supervised), the machine learns
the relevant information that distinguishes jets in pp and AA
collisions.

QGP []. Significant theoretical e↵ort have been made to
compute and predict the modification of jet observables
in heavy-ion collisions [4–18].

(Cite somewhere [19])

In general, we identified guiding principles to design
suitable jet substructure observables to obtain informa-
tion about the QGP. The first criterion is driven by theo-
retical considerations in pp collisions. For example, often
observables are chosen which Infrared Collinear (IRC)
Safe which means that they can be calculated in per-

See also:
    Chien, Elayavalli 1803.03589
    Lai 1810.00835
    Du, Pablos, Tywoniuk JHEP 03 (2021) 206
    Apolinário et al. 2106.08869

Binary classification problem

Determine the minimal set of observables 
to optimally discriminate pp vs. AA jets

Quantify K-body discriminating power
Find observables that capture the most 
discriminating aspects of jet modification
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Input layer: Complete set of jet 
substructure observables

Permutation-invariant neural network

3

FIG. 2. Classification performance quantified in terms of ROC curves using deep sets (with and without PID) to distinguish
jets in pp and AA collisions. For comparison, we also show the result based on the jet mass. The results using the LBT (left)
and Jewel (right) heavy-ion parton shower are shown. (Placeholder figure.)

mation is passed to a permutation invariant neural net-
work. This approach will give the best discrimination
power as it makes use of all the available information,
including nonperturbative/IRC unsafe physics. ii) The
N -subjettiness complete set of observables which is IRC
safe and iii) we perform a symbolic regression to identify
single (Sudakov safe) observables which capture impor-
tant aspects of the di↵erence between pp and AA jets.
Following Ref. [38] it is su�cient to train per-instance
(jet-by-jet) instead of per-ensemble classifier. In Ref. [38]
it was shown that the per-instance classifier contains all
the relevant information since collider events are inde-
pendently and identically distributed.1 We note that
di↵erent than e.g. quark/gluon jet tagging, the classi-
fication task here can be performed on data using fully
supervised learning. In addition, theoretical ambiguities
that arise for quark/gluon jet tagging are absent.

A. Deep Sets

Deep sets [21–23] are ideally suited for machine learn-
ing tasks which have to handle permutation invariant
data with variable size. They are ideally suited for col-
lider physics applications and were introduced in this
context in Ref. [24]. Consider a function f , the clas-
sifier, which depends on the momenta pi of the parti-
cles inside the jet and which is permutation invariant
with respect to the input variables, i.e. f(p1, . . . , pM ) =
f(p⇡(1), . . . , p⇡(M)), where ⇡ is the permutation operator.
Following Ref. [21], we can approximate this function as

f (p1, . . . , pM ) = F

 
MX

i=1

� (pi)

!
. (1)

1 We thank Ben Nachman, Du↵ Neill and Jesse Thaler for discus-
sions about per-instance vs. per-ensemble learning.

Here the function � maps the momenta pi to a d-
dimensional latent space. We can find a su�ciently large
value of d to approximate the function f arbitrarily well.
In Eq. (1), we then sum over the functions �(pi). The
summation ensures that the result is permutation in-
variant. Next, the function F is a map from the d-
dimensional latent space to the scalar value of the func-
tion f . We note that deep sets in Eq. (1) capture both
perturbative and nonperturbative or IRC safe and IRC
unsafe information. We nevertheless choose to use deep
sets in order to make use of both aspects and achieve
the best possible classification performance to distinguish
jets in pp and AA collisions. We parametrize the func-
tions � and F in Eq. (1) in terms of Dense Neural Net-
works (DNNs). For � we use three layers with 200 nodes
and for the latent space dimension we choose d = 512.
For F we include three layers with 200 nodes each. For
each dense layer we use the ReLU activation function [39]
and we use the softmax activation function for the final
output layer of the deep sets classifier. The training is
done with the Adam optimizer [40] and we use the bi-
nary cross entropy loss function [41]. For the numeri-
cal implementations presented in this work we use both
Keras [42]/TensorFlow [43] and PyTorch [44].

For each reconstructed jet, see section II above, we
record the transverse momentum, the rapidity and the
azimuthal angle (pTi, yi,�i) of each particle i inside the
jet. Following Ref. [24], we perform the following prepro-
cessing step to simplify the training process. We rescale
the transverse momenta of each particle inside the jet
with the total transverse momentum of the observed jet.
In addition, we center the rapidity and azimuthal angles
of the particles in the jet with respect to the jet direc-
tion. We consider deep sets architectures with and with-
out particle identification (PID). The PID information is
included as an additional feature of each particle and we
are using the preprocessing step introduced in Ref. [24].

Before applying the classifier based on deep sets to

Classifier DNNs

latent space d = 256

4

Model AUC, LBT AUC, Jewel

Deep Sets w/ PID 0.9052 0.9052

Deep Sets w/o PID 0.9005 0.9005

N-subj. (??-body) + DNN 0.9010 0.9010

Jet mass 0.8401 0.8401

TABLE I. Classification performance of the di↵erent mod-
els quantified in terms of the AUC for two heavy-ion parton
shower models.

pp vs. AA jet data, we benchmark our setup by com-
paring to the quark/gluon tagging e�ciency achieved in
Ref. [24] using the corresponding energyflow package
and the quark/gluon jet data set of Ref. [45] which is
based on Pythia 8 [31] and we find overall comparable
results.

The performance of a classifier is typically assessed by
studying the ROC curve. The ROC curve shows the
true positive rate vs. the false positive rate (cumulative
distribution functions) as the decision threshold is varied.
With our convention, e.g. Fig. 2, a random classifier
follows the diagonal dashed line and the better a classifier
is, the closer the curve is to the upper left edge of the
plot. In order to quantify the performance with a single
number, we also compute the Area under the ROC curve
(AUC). Here a random (perfect) classifier corresponds to
an AUC of 0.5 (1).

In Fig. 2, we show the ROC curve for pp vs. AA jets
using deep sets as a classifier. We show the results with
and without PID and LBT (left) and Jewel (right). The
ROC curve with PID is slightly better which is expected
as it generally makes use of more information. For com-
parison we also show the ROC curve for the jet mass
which is given by the squared sum of the momentum
four-vectors of the particles inside the jet. The results
for the AUC are summarized in table I. As expected, we
observe that the classifier based on deep sets significantly
outperforms the result of the jet mass. We conclude that
there is a lot more information contained in the nuclear
modification factor of jets in heavy-ion collisions than
what could be extracted with a single observable like the
jet mass. For example, if model parameters such as q̂
were extracted only using the jet mass, a large amount
of additional information which is encoded in the modi-
fied jet substructure in heavy-ion collisions would be left
out. The ROC curve achieved with the classifier based on
deep sets represents the ideal result and, up to further hy-
perparameter optimization, represents an upper limit on
all the information that can possibly be extracted from
jet substructure observables in heavy-ion collisions. The
general goal is now to find a set of well-defined observ-
ables which, in combination, get as close as possible to
the classifier based on deep sets. Our results can thus
provide guidance for further theory e↵orts. For example,
for other classification tasks it was suggested that non-
linear jet observables [46–52] may help to bridge the gap
from the classification performance to machine learned

FIG. 3. N -subjettiness distributions for jets in pp collisions
obtained with Pythia 8 [31]. (Placeholder figure.)

results. In the next section, we explore how close a com-
plete basis of IRC safe observables can get to this result.
We note that in principle parton shower event genera-
tors can also be trained directly on deep sets which was
explored in Ref. [53].

B. The N-subjettiness basis

In this section we consider the N -subjettiness observ-
ables [28–30] which provide a complete and minimal basis
of the M -body phase space introduced in Ref. [25]. Here
M is the number of particles inside the jet and the corre-
sponding phase space is (3M � 4)-dimensional. The N -

subjettiness observables ⌧ (�)N are defined as follows. First,
we identify N axes inside the jet. Here we use the ex-
clusive kT algorithm [54, 55] with the E-recombination
scheme [56]. The N -subjettiness variables measure the
radiation in the direction of these axes and are defined
as

⌧ (�)N =
1

pT

X

i2Jet

pTi min
n
R�

1i, R
�
2i, . . . , R

�
Ni

o
. (2)

Here pT is the transverse momentum of the measured jet,
pTi is the transverse momentum of particle i inside the jet
and RKi is its distance in the ⌘�� plane with respect to
the identified axes K. The exponent � > 0 is a tuneable
parameter. For a given N and �, the N -subjettiness
describes the radiation pattern inside the jet in terms of a
single number. We note that for  N particles inside the
jet the N -subjettiness observables vanish. We compute
the N -sbujettiness observables using the implementation
in the Fastjet contrib [57]. We show several results for
di↵erent N and � values in Fig. 3. We note that other
observables can also be used to create a complete basis
such as the Energy Flow Polynomials of Ref. [58]. We
leave a more detailed exploration for future work.
Following Ref. [25], we measure a given number of N -

subjettiness observables which completely specify the M -

-body phase space:K

-subjettiness:N

DNN:  inputs, 3 layers, tensorflow/keras3K − 4

Datta, Larkoski JHEP 06 (2017) 073

Thaler,  Tilburg JHEP 03 (2011) 015

• M-Body Phase Space: For M -body phase space, we can define the coordinates of

that phase space by M � 1 transverse momentum fractions zi, for i = 1, . . . , M � 1, and

2M � 3 pairwise angles ✓ij between particles i and j. The remaining
✓

M

2

◆
� (2M � 3) =

1

2
(M � 2)(M � 3) ,

pairwise angles angles are then uniquely determined by the geometry of points in a plane.6

To determine all of these phase space variables, we extend the set of N -subjettinesses

that were measured in the 2- and 3-body case. In this case, the 3M � 4 observables we

measure are:
n

⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , . . . , ⌧

(0.5)
M�2, ⌧

(1)
M�2, ⌧

(2)
M�2, ⌧

(1)
M�1, ⌧

(2)
M�1

o
. (2.8)

Note that there are 3(M � 2) + 2 = 3M � 4 observables, and these will span the space

of phase space variables for generic momenta configurations, when all particles have

non-zero energy and are a finite angle from one another.

As we observed in the 3-body phase space case, for a collection of M particles, all but

one of the axes for the measurement of (M � 1)-subjettiness lies along the direction of

a particle. Therefore, we only measure two (M � 1)-subjettiness observables. Stepping

back another clustering as relevant for (M � 2)-subjettiness, there are two possibilities:

– Either M �3 axes lie along the direction of M �3 particles in the jet, and the three

remaining particles are all clustered around the last axis. Then, the measurement

of (M �2)-subjettiness is sensitive to the phase space configuration of 3 particles in

the jet. By measuring three (M � 2)-subjettinesses and two (M � 1)-subjettinesses,

this then completely specifies the phase space configuration of those three particles.

– The other possibility is that M �4 axes lie along particles in the jet, while there are

two particles clustered around each of the two remaining axes. About each axis, you

are sensitive to the phase space configuration of two particles, which corresponds

to a total of 4 phase space variables. Additionally, you are sensitive to the relative

contribution of the two pairs of particles to the total (M � 2)-subjettiness value.

This configuration therefore is described by 5 phase space variables, and can be

completely specified by the measurement of three (M � 2)-subjettinesses and two

(M � 1)-subjettinesses.

This argument can be continued at further stages in the declustering. Each time an axis

is removed, three new phase space variables are introduced. These can be completely

specified by the measurement of three additional N -subjettiness observables. This then

proves that the collection of N -subjettiness observables given above uniquely determines

M -body phase space.

6The proof of this is an application of the Euler Characteristic formula:

V � E + F = 2 . (2.7)

The number of vertices V is just the number of particles in the jet, M . The number of faces F is equal to the

number of triangles that tesselate the plane, with vertices located at the particles. This is F = M � 1, as we

include the face outside the region where the points are located. It then follows that the number of edges E,

that is, the number of pairwise angles necessary to uniquely specify their distribution, is E = 2M � 3.

– 6 –
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Significant information in quenched jets up to K ≈ 30

200 < pT < 500 GeV/cR = 0.4 No background

pp vs. AA
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Significant information in quenched jets up to K ≈ 30

200 < pT < 500 GeV/cR = 0.4 No background

Unlike QCD vs. Z jets (which saturate at ), 
vacuum vs. quenched jets contain discriminating 
power in soft physics (high -body phase space)

K = 4

K
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Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

– 3 –

Datta, Larkoski JHEP 06 (2017) 073

pp vs. AA
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Deep set data representation 
(PFN) performs slightly better 
than N-subjettiness basis (DNN)

200 < pT < 500 GeV/cR = 0.4 No background

Significant information in quenched jets up to K ≈ 30

The difference can be due to:
IRC-unsafe information in PFN
Different data representations / 
training / hyperparameter performance

pp vs. AA
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Automated design of observables

Product observable: Sudakov safe

Now that we have demonstrated an ML classifier, we can find observable(s) 
that can approximate the classifier

Approximate the  N-subjettiness observables with e.g. product observables3K − 4

Lai 1810.00835
Datta, Larkoski JHEP 03 (2018) 086
Datta, Larkoski, Nachman PRD 100, 095016 (2019)

Theoretical interpretability

O = ∏
N<K, β∈{0.5,1,2}

(τβ
N)

cNβ
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Automated design of observables

16

Lasso regression

Balancing the tradeoff of discriminating power and complexity, we can design 
optimal observables for distinguishing pp and AA jets

O = ∏
N<K, β∈{0.5,1,2}

(τβ
N)

cNβ

200 < pT < 500 GeV/cR = 0.4 No background

Stronger regularization drives  to zerocNβ

(τ2
1)−0.57(τ2

6)−0.77(τ2
7)−0.68(τ0.5

14 )2.7α = 0.04
α = 0.15 τ1

14

e.g. for :K = 15

Suggests that large  is highly discriminatingN

Lai, JM, Płoskoń, Ringer — In Preparation
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Observable design at EIC

17

ML classifier + symbolic regression can be used at EIC
Jet classification
Event classification

Can be applied directly on data! (labels are known)
In the meantime: BeAGLE, eHIJING, JETSCAPE, …

Theory+experiment guidance for medium modifications
Cold nuclear matter effects
Hadronization
Explore sensitivity to gluon saturation

 Introduction           Collinear PDFs         TMDs          Diffraction & Saturation           Hadronization & eA        Conclusions     

Probes of cold nuclear matter effects

45

Zhang, Qin, Wang `19, `20

• Generalized higher twist approach

See also talks by Edmond Iancu, Matthew Sievert, Kong, Kolja Kauder

see Xin-Nian Wang’s talk

• Light and heavy flavor hadron production
Deng, Wang `10, Chang, Deng, Wang `15

• pT broadening in electron-jet correlations
Liu, FR, Vogelsang, Yuan `18,  Arratia, Jacak, FR, Song `19

Liu, Ringer, Vogelsang, Yuan PRL 122 (2019), 192003

Lai, JM, Płoskoń, Ringer — In Preparation
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Bayesian parameter estimation

18

Studying cold nuclear matter effects at the EIC follows closely jet quenching in QGP 
Constraining model parameters requires collection of jet observables

ML-assisted observable design can tell us what we should measure (and 
calculate) next in order to add new information to global fits
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Gaussian Process Emulators: efficiently explore 
multi-dimensional model parameter space

GP emulation

8

$

4
$
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5#"($"'()

Data 

Emulator (posterior process mean):
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S. Mak

21

C. Viscosity estimation and model accuracy for combined
RHIC & LHC data

Reviewing Figs. 4 and 5 we find that the observables at the
LHC give stronger constraints on the slope of the specific shear
viscosity at large temperature. It is the general expectation that
higher psNN collisions at the LHC are more sensitive to the
transport coe�cient at high temperature. This conclusion was
verified quantitatively in previous Bayesian parameter estima-
tion [24, 146]. For the present analysis, we do caution that we
currently use a di�erent number of observables at RHIC and
the LHC; consequently, we are not in a position to compare
systematically the constraining power of the two collision en-
ergies at the moment. We do expect RHIC and LHC data to
be complementary, and we proceed to a combined Bayesian
parameter estimation for Pb-Pb at psNN = 2.76TeV and Au-
Au at psNN = 200GeV collisions. For this combined anal-
ysis, the viscosity posterior for the Grad viscous correction is
shown in Fig. 6.

FIG. 6. The posterior for specific bulk (left) and shear (right) vis-
cosities resulting from a model parameter estimation using combined
data for Au-Au collisions at psNN = 200 GeV and Pb-Pb collisions
at psNN = 2.76 TeV.

As discussed in Section V A, all parameters are held the
same for the two systems except for their overall normaliza-
tions of the initial conditions — N [2.76 TeV] and N [0.2 TeV].
Recall that model parameters being kept constant does not im-
ply that the e�ective physical quantities are the same at RHIC
and the LHC. For example, the transport coe�cients are tem-
perature dependent, and the free-streaming time depends on
p
sNN and centrality through the total energy of the event.
The information gained by fitting both systems slightly re-

duces the width of the credible intervals for the specific shear
and bulk viscosities at temperatures above 250 MeV; the 90%
confidence band in the posterior for specific shear and bulk
viscosity is slightly smaller than the credible intervals given by
calibrating against either one of these two systems alone. This
illustrates the added constraining power accessed by combin-
ing the two data sets.

The simultaneous fit to experimental observables is shown
in Fig. 7, where we have plotted the emulator prediction for
the observables at one hundred parameter samples drawn ran-
domly from the posterior. Note that, in spite of some undeni-
able tension in the simultaneous fit of ALICE and STAR data

FIG. 7. The observables predicted by the Grad viscous correction
emulator, drawn from the posterior resulting from the combined fit
of ALICE data (left) for Pb-Pb collisions at psNN = 2.76 TeV and
STAR data (right) for Au-Au collisions at psNN = 200 GeV. The
simultaneous fit yields model observables which agree within ⇠20%
of experimental measurements.

(for example in the mean transverse momenta of kaons), our
hybrid model can describe simultaneously all of the observ-
ables we considered for the two systems to within 20% of the
experimental results. As discussed earlier, this is important:
our confidence in the significance of this section’s parameter
estimates rests on a good description of the experimental data
when sampling model parameters according to their posterior
probability distribution.

As a final emulator validation, we have calculated the Maxi-
mum A Posteriori (MAP) parameters of the Grad viscous cor-
rection model. Using these parameters, we simulated 5,000
fluctuating events and performed centrality averaging. The
comparison between the hybrid model prediction at the MAP
parameters and the experimental data are shown in Fig. 8, and
MAP parameters for the Grad, Chapman-Enskog and Pratt-

Data
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Explainable AI

19

A more ambitious goal: 
Can we use ML to guide 
our physics understanding?

Fit nonperturbative physics 
at the EIC?

F. Ringer, LBNL Aug 04 2021Machine learning

Explainable machine learning

13

Lai, Neill, FR, Ploskon `20

see also Bieringer, Butter, 
Heimel, Höche et al. `20

• White-box AI
• Learn the underlying physics 
of the parton shower

NN
Train GAN on the final 
output of the shower

• Generator is a Recurrent 
Neural Nework (RNN)

Final energy distribution Intermediate splittings

n ! n+ 1 partons

Train generative adversarial network 
(GAN) to learn physics of parton 
shower from final-state particles

Lai, Neill, Ploskon, Ringer 2012.06582 

https://arxiv.org/abs/2012.06582
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ML is an important tool to improve precision and save computation in multiple 
aspects of the EIC physics program

Detector design and jet reconstruction
Jet tagging and classification
ML-assisted observable design to guide global fits
Explainable AI to guide underlying physics
…and more

It will remain a tool for our bread-and-butter experimental and theoretical 
techniques — but an increasingly valuable one

Methods are evolving rapidly — where will ML be in 10 years?

Summary


